The Immune System in Pediatric Seizures and Epilepsies

Christian M. Korff, MD,^a Russell C. Dale, MD, PhD^b

The relation between the immune system and epilepsy has been studied for a long time. Immune activation may precede or follow the appearance of seizures. Depending on the situation, the innate and acquired immunity may be involved to various degrees. The intense, ongoing research has opened encouraging management and therapeutic perspectives for a significant number of patients suffering from seizures. These include the use of various drugs and less conventional approaches with anti-inflammatory or immunomodulatory properties. Data for children remain scarce, however, and the practical implications of recent discoveries in the field remain to be identified formally. The aim of this review is to present current knowledge of the role of immunity in relation to seizures, with a particular emphasis on clinical data available in childhood. More specifically, various autoantibodies involved in autoimmune encephalitis and epilepsy and general pathophysiological hypotheses on the role of immunity in seizure genesis are discussed, specific epilepsy syndromes in which autoimmune components have been studied are summarized, workup recommendations and therapeutic options are suggested, and finally, open questions and future needs are presented.

The risk of new onset seizures is particularly high during childhood. The average prevalence of nonfebrile recurrent seizures in developed countries is between 3.5 and 5 per 1000 children,^{1,2} and the cumulative incidence rate of epilepsy by age 15 years old is ~0.8%. Despite huge advances in the field of imaging and genetics that have improved the understanding of underlying pathophysiological mechanisms, > 60% of seizure disorders remain without an identifiable cause.³

In a recent, large population-based study (N = 2518034), children with autoimmune diseases had an overall 5 times higher risk of epilepsy when compared with age-matched controls.⁴ This risk was consistently heightened in all of the 12 autoimmune diseases considered, including some not known to affect central nervous system (CNS) function such as myasthenia gravis or psoriasis.⁴ In some of these situations, specific autoantibodies (auto-ABs) have been involved in the development of neurologic signs and symptoms, yet precise pathophysiological mechanisms remain to be identified.

In addition, immune function has been intensively studied in numerous primary neurologic diseases, which include the common epilepsies for which an underlying etiology remains to be discovered.⁵ The acknowledgment of the importance of immunity in the pathophysiology of the epilepsies is illustrated by the current intention of the International League Against Epilepsy to include a new immune etiological category in its proposal for an Organization of the Epilepsies.⁶ Overall, the ongoing research in that field opens encouraging management and therapeutic perspectives for a significant number of adults with

abstract

^aPediatric Neurology Unit, University Hospitals of Geneva, Geneva, Switzerland; and ^bThe Children's Hospital at Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia

Drs Korff and Dale conceptualized and designed the study, drafted the initial manuscript, and approved the final manuscript as submitted.

DOI: https://doi.org/10.1542/peds.2016-3534

Accepted for publication Apr 17, 2017

Address correspondence to Christian M. Korff, MD, Pediatric Neurology Unit, Child and Adolescent Department, University Hospitals of Geneva, 6 Rue Willy-Donzé, CH 1211 Geneva 14, Switzerland. E-mail: christian.korff@hcuge.ch

PEDIATRICS (ISSN Numbers: Print, 0031-4005; Online, 1098-4275).

Copyright $\ensuremath{\textcircled{O}}$ 2017 by the American Academy of Pediatrics

FINANCIAL DISCLOSURE: The authors have indicated they have no financial relationships relevant to this article to disclose.

FUNDING: No external funding.

POTENTIAL CONFLICT OF INTEREST: The authors have indicated they have no potential conflicts of interest to disclose.

To cite: Korff CM and Dale RC. The Immune System in Pediatric Seizures and Epilepsies. *Pediatrics*. 2017;140(3):e20163534

	Intracellular Antigens			Surface Antigens						
	GAD	Onconeural	VGKC-complex (including Caspr-2)	NMDA-R	AMPA-R	Folate-R	GABA _A -R	GABA _B -R	Glycine-R	DPPX-6
Suggestive associated features		(LE) ataxia (limited data in children)	L <mark>E</mark> , focal seizures, neuromyotonia	Psychiatric disturbance, movement disorder, sleep difficulties, dysautonomia	LE (limited data in children)	refractory	LE, multifocal encephalitis (limited I data in children)		(Stiff-person syndrome, PERM, LE, focal encephalitis	Prodromal weight loss, gastrointestina dysmotility, psychiatric manifestations brainstem involvement
Prognosis in children	Unfavorable	Unknown	(Favorable with) (immune) (therapy) or associated- tumor removal	Favorable with (immune) (therapy)or associated- tumor (often ovarian) removal	Unknown	Unknown, may improve with folinic acid	Unknown	Unknown	Favorable) with immune (therapy	Favorable with (immune) (therapy)
Important pediatric references	12–15	16	17–23	24–29	38	30–32	11	33	34–36	

TABLE 1 Auto-ABs Against Neuronal Antigenic Targets Reported in Children With Seizures

Auto-ABs found predominantly in adults are not presented. ABs against leucine-rich glioma inactivated protein have not yet been reported in children with seizures. AMPA, α-amino-3hydroxy-5-methyl-4-isoxazolepropionic acid; DPPX-6, dipeptidyl-peptidase-like protein-6; GABA, γ aminobutyric acid; PERM, progressive encephalomyelitis with rigidity and myoclonus; R, receptor; VGKC, voltage-gated potassium channels.

seizures, but data in children remain scarce.⁷ Because early identification and intervention is increasingly shown to improve the general outcome, alerting pediatricians about this specific topic is important.

Accordingly, this article presents an overview of the current state of knowledge of the involvement of innate and adaptive immunity in epilepsies with an emphasis on available pediatric data.

IMMUNITY AND EPILEPSIES: RECENT PROGRESS IN THE UNDERSTANDING OF A COMPLEX RELATIONSHIP

An explosion of the number of scientific studies on the relation between autoimmunity and epilepsy has occurred since the early 1990s. In some circumstances, immune activation precedes and provokes the appearance of seizures. Animal research data indicate that contrarily, in other situations, the inflammatory cascade may be activated by the seizures themselves. It is generally accepted that a certain degree of immune reaction is favorable and contributes to the protection of the brain from permanent damage after seizures; in certain circumstances, however, these immune processes may be deleterious.⁸ In addition, various auto-ABs have been associated with acute or chronic conditions in which seizures are a hallmark, but it is often unclear whether they are pathogenic or if they simply represent markers of an underlying disease.

Auto-ABs Related to Seizures in Childhood

Numerous auto-ABs have been the subjects of study in epilepsy in past years.⁹ Two main categories of auto-ABs are usually identified based on the location of their target antigens: intracellular (unlikely to be pathogenic) or neuronal surface (likely to be pathogenic). Their presence has been demonstrated in the serum or cerebrospinal fluid (CSF) of many patients with seizures, but the precise roles of many auto-ABs remains to be fully understood, especially in children. A recent review article covers this subject extensively.¹⁰ Current knowledge^{11–38} is summarized in Table 1.

Autoimmune encephalitis syndromes are increasingly being defined by their associated auto-AB biomarker. such as N-methyl D-aspartate glutamate receptor (NMDA-R) AB. However, many patients with suspected autoimmune encephalitis do not have an associated biomarker, and so clinical syndromes remain important, the most important of which being limbic encephalitis (LE). LE is an inflammatory encephalitis that predominantly affects the limbic region with clinical memory change, temporal lobe seizures, and psychiatric symptoms, and it is more common in adults than in children. MRIs typically show restricted inflammation and swelling in the bilateral limbic regions, EEGs can show localizing features, and CSF may show features of inflammation. A set of diagnostic criteria for LE has been recently proposed by Graus et al.³⁹ Unlike in adults, when LE is often associated with paraneoplastic auto-ABs, LE in children is often

Disease	Disease Characteristics	Underlying Cause	Major Elements Indicating Immune Activation	Ref. No(s).
Rasmussen encephalitis	Refractory focal epilepsy, progressive hemispheric atrophy, and contralateral neurologic dysfunction	Unknown	 Peripheral T cells stimulated by GluRe2 Predominance of T-cell infiltration of the CNS Granzyme-B-mediated T-cell cytotoxic reaction 	40–59
<mark>West</mark> syndrome	Epileptic <mark>spasms, hypsarhythmia,</mark> (developmental delay or) (regression)	Multiple reported (mostly structural, metabolic, or genetic defects)	 Positive effect of steroid treatment Auto-AB detected in some patients 	21,23,30,60,61
Landau-Kleffne <mark>r</mark> syndrome	(Acquired aphasia) CSWS in bilateral temporal regions	Unknown	 Positive effect of steroid treatment Auto-AB or changes in levels of various circulating cytokines detected in some patients 	62–69
AEIMSE	A group of likely related acute encephalopathies that present in childhood with status epilepticus, including HHE, FIRES	Unknown	 Auto-AB rarely detected in patients Positive effect of IL-1 receptor antagonist (anakinra) treatment in some FIRES patients 	13,22,70–84
Mesial temporal sclerosis linked with previous prolonged febrile seizures	Prolonged febrile seizures in infancy, subsequent identification of mesial temporal lobe sclerosis	Unknown	 Various cytokines detected in serum or CSF of some patients after febrile seizures Involvement of genes coding for innate immune-response proteins 	85–90

TABLE 2 Pediatric Epilepsies or Epileptic Conditions in Which Dysimmune Features Have Been Reported

AEIMSE, acute encephalopathy with immune-mediated status epilepticus; CSWS, continuous spike-waves during sleep; FIRES, febrile infection-related epilepsy syndrome; GluR, glutamate receptor; HHE, hemiconvulsion-hemiplegia-epilepsy syndrome.

seronegative (although it can be associated with glutamic acid decarboxylase [GAD] auto-ABs).¹⁷

Specific Pediatric Epilepsies or Conditions in Which Auto-ABs or Dysimmune Features Have Been Reported

A majority of children who have seizures share certain clinical features that likely reflect a participation of the immune system in their diseases.⁹ These include a change (mostly an increase or, more rarely, a decrease) in seizure frequency during periods of infectious illnesses or a favorable response to certain immunotherapeutic approaches. Some of the previously described auto-ABs (as well as additional auto-ABs not primarily directed against CNS targets), elevated cytokinesm, and other nonspecific markers of an immune activation have been found in children with certain

well-delineated epilepsy syndromes, such as Rasmussen encephalitis,^{40–59} West syndrome,^{21,23,30,60,61} Landau-Kleffner syndrome,^{62–69} acute encephalopathy with immunemediated status epilepticus,^{13,22,70–84} and mesial temporal sclerosis linked with previous prolonged febrile seizures^{85–90} (Table 2). Detailed pathophysiological mechanisms remain to be understood.

VARIOUS MECHANISMS LINK IMMUNE ACTIVATION AND SEIZURES

It is generally accepted that the activation of the immune system can be both the consequence and the cause of seizures, which in both cases can induce permanent functional changes in the CNS. These may themselves contribute to generate epileptic seizures.^{91–93} Various pathways link the immune response and seizures. These include adaptive systemic responses, such as

T- and B-cell activation and auto-AB production, and innate mechanisms of the CNS, like the increased production of cytokines by activated glial cells observed in response to various stimuli such as seizures. The latter mechanism is a recently identified process named neurogenic neuroinflammation, in which innate and adaptive inflammatory reactions and vascular cell activation within the CNS are triggered by activity in primary afferent nerve fibers or higher-order neurons.⁹⁴ On the basis of 5 recent overview articles, 91,94–97 one can attempt to summarize the most important steps that link the immune system and seizures with the following:

1. An initial injury occurs, in the CNS or in the periphery, and provokes an activation of the immune system in one or both compartments (systemic or neuroinflammatory). Various events have been identified as being able to play such a role, including peripheral infections, autoimmune diseases, CNS vascular disease (thrombosis, emboli, and hemorrhage), vasculitis, neurotrauma, metabolic disorders, CNS infections, seizures, and status epilepticus.

and status epilepticus.
Inflammatory mediators are released in either compartment, or in both depending on the

or in both, depending on the nature of the initial injury. These mediators include various cytokines (such as interleukin [IL]-1 β , IL-6, and tumor necrosis factor- α), complement proteins, so-called danger signals (molecules that alert the microenvironment to an ongoing injury, such as high-mobilitygroup box-1 and its activation of toll-like receptor 4 in neurons and glial cells), cell-adhesion molecules, prostaglandins produced by the activation of the cyclooxygenase-2 signaling pathway, and chemokines. The upregulation of these mediators and their release by lymphocytes in the periphery, or by activated glial and neuronal cells, may in turn provoke blood-brain barrier (BBB) breakdown, adhesion and penetration of activated peripheral lymphocytes, immunoglobulins and albumin into the brain (and, for the latter, subsequent activation of the transforming growth factor- β signaling pathway), increasing extracellular potassium concentration, as well as functional changes in neurons, glial cells, and astrocytes.

 Neuronal functional changes occur, which increase seizure susceptibility. Examples of these functional changes include the increased expression of IL-1R1 (the target and mediator of the biological response to IL-1β) in neurons; the activation of various

intracellular kinase families, such as inducing phosphorylation of a subunit of glutamatergic NMDA-R; the inhibition of the glutamate reuptake or the increase of glutamate release in the extracellular space by astrocytes; the promotion of synaptic reorganization; and the dysfunction of ion channels. Animal research studies also showed that certain genes that code for mediators of the inflammatory response, such as IL-1, IL-6 (and its receptor), and IL-1 β are upregulated in the acute phase that follows status epilepticus or traumatic brain injury.^{8,98}

All of these mechanisms increase neuronal excitability and lower the seizure threshold, which creates a vicious cycle of increased seizure susceptibility. Animal research has provided details regarding the various mechanisms for inflammation-induced epileptogenesis. These include the abovementioned increased adhesion of activated peripheral leukocytes to endothelial cells followed by their infiltration into the CNS through cytoskeletal reorganization.⁹⁹ These cells generate free radicals and cytotoxic enzymes, which, in addition to further production and secretion of cytokines and chemokines, participate in neuronal dysfunction or degeneration that contribute to the appearance of a subsequent chronic susceptibility to seizures.95

On the other hand, a neuroprotective role of CD3⁺ T

cells of counterbalancing the innate inflammation has been shown in mice that suffer from kainic-acid–induced seizures and lesioned hippocampi,¹⁰⁰ thus leaving the question of the exact role of the adaptive response open.

From another standpoint, the relation between the BBB and the occurrence of epilepsy has been studied extensively for years,^{101–105} but the way in which BBB disruption may provoke chronic epilepsy remains incompletely understood. It has been hypothesized, for example, that acute BBB disruption after initial seizures cause prolonged or permanent changes in brain permeability, which forms the basis of chronic surrounding neuronal excitability and further seizure genesis.^{106–108} Recent advances in the BBB disruption theory will likely help our understanding of the process. Bargerstock et al¹⁰⁹ showed that S100B, an astrocytic protein, is released in the systemic circulation when the BBB endothelial tight-junctions are disrupted, for instance, during seizures. This release may in turn induce a systemic autoimmune reaction against the brain, which underlies the development of chronic conditions in the CNS, such as epilepsy and Alzheimer disease. These results need confirmation.

THERAPEUTIC APPROACHES AND PROGNOSIS

Various drugs and molecules with anti-inflammatory or immunomodulatory properties have been shown to decrease the occurrence of additional seizures in acute clinical or experimental situations and to prevent kindling and epilepsy development in animals.^{98,110–117} Their mechanisms of action are summarized in Table 3. As a general rule, situations in which neuronal auto-ABs are found and target surface antigens (eg, NMDA-R) have a much higher therapeutic response rate than those in which antigens are intracellular, such as GAD.¹¹⁸ Potential immune approaches for children in various epileptic conditions include steroids,^{119,120} intravenous immunoglobulin (IvIg),^{121–123} plasma exchanges,^{124,125} rituximab (RTX), cyclophosphamide, and alternative approaches such as the ketogenic

TABLE 3 Examples of Drugs and Treatments With Anti-Inflammatory or Immunomodulatory Properties					
That Have Shown Experimental or Clinical Efficacy in Seizure Treatment or Prevention of					
Epilepsy Development					

Mechanism of Action	Examples of Drugs, Treatments
BBB homeostasis control	Steroids, ketogenic diet, hypothermia, vagal nerve stimulation, erythropoietin, magnesium sulfate, rapamycin
Decreased leukocyte adhesion to BBB	Natalizumab (integrin α-4 specific monoclonal AB), steroids, IL-R antagonists
Immunosuppression	
Inhibition of auto-AB production	Steroids, cyclophosphamide, RTX
Inhibition of T cell response	Tacrolimus, diazepam
Inhibition of cytokine production and signaling	Minozac, ICE-inhibitor (eg, VX-765, anakinra), levetiracetam
Via NF-κB inhibition	Valproate, propofol, thiopental, ketamine
Removal of auto-AB	lvlg, plasma exchanges
PTGS2 inhibition	NSAIDs: celecoxib, parecoxib
Microglia inactivation	Erythropoietin, minocycline

ICE, interleukin converting enzyme; NF, nuclear transcription factor; NSAID, nonsteroidal anti-inflammatory drug; PTGS2, prostaglandin G/H synthase 2 (formerly COX-2, cyclooxygenase 2); R, receptor.

diet, in which anti-inflammatory and neuroprotective properties are likely to be major players in its mechanisms of action.^{70,97,126–128}

Two meta-analyses on the use of IvIg or immunomodulatory interventions overall in epilepsy concluded that, on the basis of available data, their efficacy could not be demonstrated.^{129,130} Thus, the question of whether antiinflammatory or immunomodulatory therapies should be added to classic antiepileptic drugs in autoimmune or even in all types of epilepsies remains open.

In a recent study, Irani et al¹³¹ reported a rapid decrease and progressive total disappearance of faciobrachial dystonic seizures in the 9 patients with ABs against leucinerich glioma inactivated 1 protein who were treated with steroids in addition to the initial antiepileptic drugs to which seizures were refractory.

Similarly, Toledano et al¹³² selected 29 of 110 patients at their neuroimmunology clinic who presented with seizures as a major complaint. Children as young as 2 years old were included. These patients were suspected of having seizures of an autoimmune etiology

on the basis of the presence of at least 1 neural AB, personal or family history or physical stigmata of autoimmune disorders, and frequent or refractory seizures. Treatment with daily infusions of 1 g of intravenous methylprednisolone or 0.4 g/ kg IvIg for 3 to 5 days followed by weekly infusions for 6 to 12 weeks at the same dose (alone or in combination) was administered. Eighteen patients responded with a decrease in seizure frequency, which was sustained in the majority of cases. The study brought class IV evidence that these therapeutic options improved seizure control.132

The role of agents that modify the innate immune system function and attenuate neuroinflammation. such as melatonin, minocycline, or interferon β-secreting mesenchymal stem cells,^{133–136} is emerging. In a recent study, minocycline was shown to improve adaptive behaviors of certain children with Angelman syndrome, although the exact mechanism of action could be multifactorial.¹³⁷ Whether these molecules have a role to play in the management of certain forms of epilepsy remains to be evaluated. Another major, current theme in neuroimmunology

is that early therapy is more likely to be effective than later treatment in autoimmune encephalitis, which has been recently demonstrated in a thorough review of the literature.¹³⁸

PRACTICAL IMPLICATIONS OF AVAILABLE DATA AND CURRENT UNDERSTANDING IN THE MANAGEMENT OF CHILDREN WITH SEIZURES

When Should One Clinically Suspect a Child With Seizures of Immune Etiology?

Suleiman et al¹³⁹ proposed a flowchart to approach children with suspected autoimmune seizures. Likewise, Bien¹¹⁸ proposed a detailed table of clinical and paraclinical features that should prompt the search for auto-ABs in patients with epilepsy. More recently, Graus et al³⁹ proposed a clinical approach to the diagnosis of autoimmune encephalitis, which emphasized that clinical suspicion should result in first-line immune therapy rather than wait for auto-AB results. Based on these proposals, we propose that immune function analyses should be specifically considered in children if 3 of these 5 criteria are present (Fig 1): (1) unusually high frequency of seizures from onset, with early refractoriness to classic antiepileptic drugs; (2) additional clinical signs of acute or subacute onset, which are suggestive of diffuse CNS involvement (such as psychiatric) or behavioral troubles, disturbance of consciousness, abnormal movements, or sleep problems); (3) the clinical presentation clearly orients to a syndrome associated with the presence of specific auto-ABs; (4) presence of a personal or family history of autoimmune disease; and (5) the clinical presentation does not orient to well-circumscribed and rapidly identifiable epilepsy syndromes, and structural lesions, and infectious, metabolic, or toxic diseases are excluded by history and initial investigation.

FIGURE 1

Children with seizures of suspected immune etiology: suggestive clinical features and proposed stepwise diagnostic approach. FLAIR, fluid attenuation inversion recovery; T2, transverse relaxation time.

In addition, certain infections are known to trigger encephalitis and

epilepsy in children. Some of them directly infect the brain and cause a primary viral encephalitis; on the other hand, certain micro-organisms can induce a secondary autoimmune encephalitis, such as herpes simplex or varicella zoster-induced anti-NMDA-R encephalitis.^{140–142} In some of these infectious or postinfectious encephalitis syndromes, there is evidence of autoimmunity and specific biomarkers (such as NMDA-R AB), whereas in other syndromes, there is no specific biomarker, and the exact inflammatory mechanism is unclear. Studies of postencephalitic epilepsy showed that herpes simplex and mycoplasma have the highest potential to result in ongoing epilepsy.^{143,144} In these studies, severe clinical indicators such as status epilepticus were risk factors for subsequent drug-resistant epilepsy. Recently, auto-AB against leimodin-1, an intracellular protein that is expressed in smooth muscle tissue and the thyroid but also in the cytoplasm of neurons, have been found in the serum and CSF of certain children from eastern Africa with nodding syndrome, a thus far unexplained and epidemic epileptic disorder that is associated with the parasitic worm **Onchocerca** volvulus.¹⁴⁵

Responsiveness to immune therapy is indicative of autoimmune epilepsy, but this is only possible to determine in retrospect. Intraindividual seizure variability or multifocality and history of neoplasia have been related to autoimmune epilepsy in adults, and they should also be considered as suggestive features in children. It is important to note that the absence of these features cannot definitively rule out autoimmune epilepsy.

Also, certain patients with autoimmune encephalitis do not exhibit any clinical symptoms besides the seizures.¹⁴⁶ These observations are likely to be rare, particularly in childhood, and we do not believe all children presenting with seizures should be investigated for an immune etiology in the absence of other clinical or investigational features that are suggestive of inflammation.

These limitations emphasize the fact that the spectrum of autoimmune epilepsy is yet to be defined, and novel CSF or blood biomarkers are needed.

How Should a Child With Seizures of a Suspected Immune Etiology Be Investigated?

There have been major advances in our understanding of the roles of auto-ABs as mediators and biomarkers in autoimmune epilepsy, but it is likely that many syndromes have dominant cellular or innateimmune mechanisms that are poorly recognized. Broader biomarker profiles including cytokine and/or chemokine, molecular techniques, and ligand imaging studies will certainly improve our ability to identify CNS inflammation in the future.

We suggest that targeted blood analyses for the most likely auto-ABs according to clinical presentation, the use of biochips (mosaics of cells that display various antigens, such as those described in Table 1),¹¹⁸ and a cerebral MRI with transverse relaxation time and fluid attenuation inversion recovery sequences should be the minimal procedures performed initially in children with seizures of a suspected immune etiology. Because blood investigations may bring nonspecific (positive or negative) results, a lumbar puncture should be performed to look for increased protein or cell counts, oligoclonal bands, and intrathecal production of auto-ABs. A standard EEG may bring forward additional clues in specific situations, such as when NMDA-R encephalitis is suspected and a pattern of extreme δ brush is present (although this feature has low sensitivity).^{26,147} An extended blood, CSF, and urine workup for systemic autoimmune diseases should also be considered, especially in those with multiorgan involvement (Table 4). This workup includes liver- and kidney-function markers, erythrocyte sedimentation rates, complement proteins, various auto-ABs encountered in systemic lupus erythematosus or vasculitides, as well as auto-ABs associated with autoimmune thyroid disease (which one has to remember represents

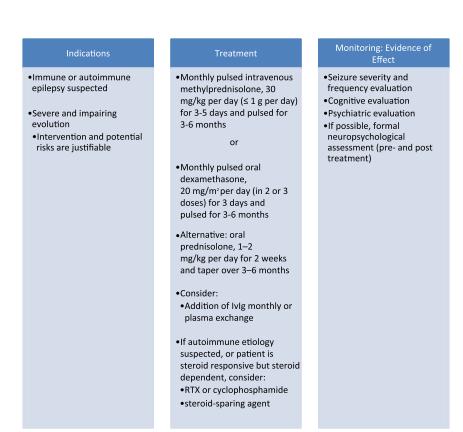
TABLE 4	Proposed Investigat	<mark>on</mark> of Seizures a	nd Epilepsy of Sus	pected Immune Etiology

Test Grouping	Specific Tests			
Specific auto-ABs associated with autoimmune	Cell-based assay, such as Eurimmun biochip			
epilepsy (see Table 1)	Anti-NMDA-R AB			
	Anti-GABA _A -R AB			
	Anti-MOG AB (if CNS demyelination)			
	Anti-GAD			
	Other auto-ABs rarely found in children: LGI-1, Caspr2, GABA _R -R, DPPX-6, neurexin 3a, AMPA-R			
Evidence of peripheral inflammation or immune	Complete blood cell count			
dysregulation	Erythrocyte sedimentation rate			
	CRP			
	IgG, IgM, IgA			
	C3, C4, CH50			
Evidence of systemic autoimmunity or	Antinuclear AB			
vulnerability to autoimmunity	Rheumatoid factor			
	Antiphospholipid AB			
	Antineutrophil cytoplasmic AB			
	Anti-DNA AB			
	AB to extractable nuclear antigens: Anti-Sm,			
	Anti-Jo1, antihistones, anti-scl70, anti-SSA/SSB, antiribonucleoproteins,			
	antithyroid peroxidase AB, anti-TSH receptor AB			
Evidence of (nonspecific) immune activation, inflammation, or CNS infection	Microscopy, protein count, CSF oligoclonal bands, neopterin			

AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; anti-SSA, anti–Sjögren's-syndrome-related antigen A; anti-SSB, anti-Sjögren's syndrome type B; anti-TSH, antithyrotropin receptor Caspr2, contactin-associated protein; CRP, c-reactive protein; DPPX-6, dipeptidyl-peptidase-like protein-6; GABA, γ aminobutyric acid; IgA, immunoglobulin A; IgG, immunoglobulin G; IgM, immunoglobulin M; LGI, leucine-rich glioma inactivated 1 protein; MOG, myelin oligodendrocyte glycoprotein; NMDA-R, N-methyl D-aspartate glutamate receptor.

a predisposition to autoimmunity and autoimmune thyroid disease rather than a pathogenic marker of autoimmune epilepsy). Tumor searches should be performed according to the potential finding of auto-ABs specifically associated with malignancies, such as ovarian teratomas in girls with the NMDA-R auto-AB. Searching for nonspecific markers of immune activation in the CNS, such as CSF neopterin or oligoclonal bands, may also be helpful.^{148,149}

There is an urgent need to develop reliable markers of CNS immune activation, which are currently lacking or not broadly available. These will likely include CSF cytokines and chemokines and EEG or imaging features. An example of the latter was provided recently by an ¹¹c-acetate positron emission tomography scan study of 23 adult patients with epilepsy arising from the temporal lobe in which increased binding of one of these markers, translocator protein 18 kDa, was demonstrated ipsilaterally and contralaterally to seizure foci, which suggests ongoing diffuse inflammation.¹⁵⁰ In another study, the attempt to detect specific EEG features in patients with epilepsy and various antineuronal ABs failed to define discriminating features.¹⁵¹ However, there are acute EEG indicators of poor outcome in children with encephalitis.¹⁵² Thus, EEG can also be useful in terms of prognosis.


How Should a Child With Seizures of Demonstrated (or Strongly Suspected) Immune Etiology be Treated?

The classic treatment schemes used in other autoimmune neurologic diseases may also be applied to seizures and epilepsy of immune etiology. Current recommendations for autoimmune encephalitis, such as NMDA-R AB encephalitis, include intravenous methylprednisolone at 30 mg/kg per day for 3 to 5 days (≤1 g) followed by ongoing, monthly pulsed steroids, oral prednisone, or prednisolone at 1 to 2 mg/kg per day for 2 to 4 weeks and a slow taper.^{118,139,153} This approach should be considered as soon as suspicion of autoimmune etiology arises, be it in chronic or acute situations.³⁹ As specifically demonstrated in conditions like NMDA-R encephalitis,153-155 aggressive treatment including ≥ 4 to 10 plasma exchanges¹¹⁸ followed by IvIg at 2 g/kg divided by 2 to 5 doses (or IvIg followed by plasma exchanges after a minimal 2-week interval)¹⁵⁶ and various combinations of immunosuppressive drugs (including intravenous RTX at 375 mg/m² every week, 2–4 times; and intravenous cyclophosphamide at 750 mg/m² monthly for 3–6 months)¹¹⁸ should be rapidly considered in conjunction with steroids in severe disease.

Importantly, this treatment scheme has been proposed for autoimmune epilepsy and/or encephalitis and may not be effective in other dysimmune epilepsy syndromes. Given the fact that immune activation in the CNS can be protective, the best therapeutic approach for patients with suspected but not confirmed immune-mediated epilepsy remains uncertain. In Fig 2, we propose an immune-therapy trial scheme that could be followed in future prospective studies of suspected immune or autoimmune epilepsy.^{138,157}

CONCLUSIONS

It is now clear that inflammation and autoimmunity play important roles in childhood seizures and epilepsies. These immune reactions can be the cause of seizures, such as when auto-ABs against various CNS targets involved in neuronal activation are produced. On the other hand, various CNS and peripheral immune responses are activated after seizures. The latter mechanisms are encompassed in the recently described concept of neurogenic neuroinflammation, which can result in the activation of an anti-inflammatory cascade

FIGURE 2

A guide to immune therapy trial. The duration of the immune trial is dependent on the clinical scenario. In general, the therapeutic trial needs to be long enough to determine effect, and in more severe conditions, the trial should be sustained or even redosed.^{138,157} Steroids should be considered for all patients with suspected autoimmune epilepsy. In strongly suspected cases or cases with proven steroid responsiveness and/or dependence, other immune therapies such as IvIg, RTX, cyclophosphamide, and steroid-sparing agents like mycophenolate mofetil should be considered.

and homeostatic mechanisms with subsequent neuroprotection and interruption of seizures or the perpetuation of a maladaptive and neurotoxic immune response as the basis of further epilepsy genesis.94 Important questions that remain open include the understanding of the precise timing and sequence of elements of the immune response to seizures, the detection of reliable diagnostic biomarkers of CNS inflammation in children with epilepsies, the identification of specific clinical, radiologic, and electrophysiological features that may allow early suspicion of immune epilepsy, and the development of optimal therapeutic strategies and molecules targeted against the various inflammatory mediators described above through prospective-controlled studies.

ACKNOWLEDGMENTS

We address our warmest thanks to Dr Douglas R. Nordli Jr, in Los Angeles for his useful suggestions in the initial stages of the manuscript.

ABBREVIATIONS

auto-AB: autoantibody BBB: blood-brain barrier CNS: central nervous system CSF: cerebrospinal fluid GAD: glutamic acid decarboxylase IL: interleukin IvIg: intravenous immunoglobulin LE: limbic encephalitis NMDA-R: N-methyl D-aspartate glutamate receptor RTX: rituximab

REFERENCES

- Hauser WA, Annegers JF, Kurland LT. Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935-1984. *Epilepsia*. 1993;34(3):453–468
- Berg AT, Jallon P, Preux PM. The epidemiology of seizure disorders in infancy and childhood: definitions and classifications. *Handb Clin Neurol.* 2013;111:391–398
- Hauser WA. Epidemiology of epilepsy in children. In: Pellock JM, Nordli DR Jr, Sankar R, Wheless JW, eds. Pellock's Pediatric Epilepsy: Diagnosis and Therapy. New York, NY: Demos Medical Publishing; 2017:177–205
- 4. Ong MS, Kohane IS, Cai T, Gorman MP, Mandl KD. Population-level evidence for an autoimmune etiology of epilepsy. *JAMA Neurol*. 2014;71(5):569–574
- Bien CG, Scheffer IE. Autoantibodies and epilepsy. *Epilepsia*. 2011; 52(suppl 3):18–22
- Korff CM, Scheffer IE. Epilepsy classification: a cycle of evolution and revolution. *Curr Opin Neurol.* 2013;26(2):163–167
- Bien C. Immune-mediated pediatric epilepsies. In: Dulac O, Lassonde M, Sarnat H, eds. *Handbook of Clinical Neurology: Pediatric Neurology Part 1*. Amsterdam, Netherlands: Elsevier B.V.; 2013:521–531
- Choi J, Koh S. Role of brain inflammation in epileptogenesis. *Yonsei Med J.* 2008;49(1):1–18
- 9. Korff C. Autoimmunité, épilepsies, et encéphalopathies chez l'enfant. *Epileptologie*. 2014;31:26–31
- Suleiman J, Dale RC. The recognition and treatment of autoimmune epilepsy in children. *Dev Med Child Neurol.* 2015;57(5):431–440
- Petit-Pedrol M, Armangue T, Peng X, et al. Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: a case series, characterisation of the antigen, and analysis of the effects of antibodies. *Lancet Neurol.* 2014;13(3):276–286
- Korff CM, Parvex P, Cimasoni L, et al. Encephalitis associated with glutamic acid decarboxylase autoantibodies in

a child: a treatable condition? *Arch Neurol.* 2011;68(8):1065–1068

- Specchio N, Fusco L, Claps D, Vigevano F. Epileptic encephalopathy in children possibly related to immunemediated pathogenesis. *Brain Dev.* 2010;32(1):51–56
- Olson JA, Olson DM, Sandborg C, Alexander S, Buckingham B. Type 1 diabetes mellitus and epilepsia partialis continua in a 6-year-old boy with elevated anti-GAD65 antibodies. *Pediatrics*. 2002;109(3). Available at: www.pediatrics. org/cgi/content/full/109/3/E50
- Lin JJ, Lin KL, Hsia SH, Wang HS, Chou IJ, Lin YT; CHEESE Study Group. Antiglutamic acid decarboxylase antibodies in children with encephalitis and status epilepticus. *Pediatr Neurol.* 2012;47(4):252–258
- Honnorat J, Didelot A, Karantoni E, et al. Autoimmune limbic encephalopathy and anti-Hu antibodies in children without cancer. *Neurology*. 2013;80(24):2226–2232
- Haberlandt E, Bast T, Ebner A, et al. Limbic encephalitis in children and adolescents. *Arch Dis Child*. 2011;96(2):186–191
- Kröll-Seger J, Bien CG, Huppertz HJ. Non-paraneoplastic limbic encephalitis associated with antibodies to potassium channels leading to bilateral hippocampal sclerosis in a pre-pubertal girl. *Epileptic Disord*. 2009;11(1):54–59
- Suleiman J, Brenner T, Gill D, et al. Immune-mediated steroid-responsive epileptic spasms and epileptic encephalopathy associated with VGKCcomplex antibodies. *Dev Med Child Neurol.* 2011;53(11):1058–1060
- Lin JJ, Lin KL, Hsia SH, Wang HS, Chiu CH; CHEESE Study Group. VGKC complex antibodies in pediatric severe acute encephalitis: a study and literature review. *Brain Dev.* 2013;35(7):630–635
- Suleiman J, Brenner T, Gill D, et al. VGKC antibodies in pediatric encephalitis presenting with status epilepticus. *Neurology*. 2011;76(14):1252–1255
- 22. Illingworth MA, Hanrahan D, Anderson CE, et al. Elevated VGKC-complex antibodies in a boy with fever-induced refractory epileptic encephalopathy in

school-age children (FIRES). *Dev Med Child Neurol*. 2011;53(11):1053–1057

- Suleiman J, Wright S, Gill D, et al. Autoantibodies to neuronal antigens in children with new-onset seizures classified according to the revised ILAE organization of seizures and epilepsies. *Epilepsia.* 2013;54(12):2091–2100
- 24. Poloni C, Korff CM, Ricotti V, et al. Severe childhood encephalopathy with dyskinesia and prolonged cognitive disturbances: evidence for anti-N-methyl-D-aspartate receptor encephalitis. *Dev Med Child Neurol.* 2010;52(5):e78–e82
- Florance NR, Davis RL, Lam C, et al. Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in children and adolescents. *Ann Neurol.* 2009;66(1):11–18
- 26. Armangue T, Titulaer MJ, Málaga I, et al; Spanish Anti-N-methyl-D-Aspartate Receptor (NMDAR) Encephalitis Work Group. Pediatric anti-N-methyl-Daspartate receptor encephalitisclinical analysis and novel findings in a series of 20 patients. *J Pediatr.* 2013;162(4):850–856.e2
- 27. Granerod J, Ambrose HE, Davies NW, et al; UK Health Protection Agency (HPA) Aetiology of Encephalitis Study Group. Causes of encephalitis and differences in their clinical presentations in England: a multicentre, populationbased prospective study. *Lancet Infect Dis.* 2010;10(12):835–844
- Gable MS, Sheriff H, Dalmau J, Tilley DH, Glaser CA. The frequency of autoimmune N-methyl-D-aspartate receptor encephalitis surpasses that of individual viral etiologies in young individuals enrolled in the California Encephalitis Project. *Clin Infect Dis.* 2012;54(7):899–904
- Byrne S, Walsh C, Hacohen Y, et al. Earlier treatment of NMDAR antibody encephalitis in children results in a better outcome. *Neurol Neuroimmunol Neuroinflamm*. 2015;2(4):e130
- 30. Steele SU, Cheah SM, Veerapandiyan A, Gallentine W, Smith EC, Mikati MA. Electroencephalographic and seizure manifestations in two patients with folate receptor autoimmune antibody-mediated primary cerebral folate deficiency. *Epilepsy Behav*. 2012;24(4):507–512

- Bonkowsky JL, Ramaekers VT, Quadros EV, Lloyd M. Progressive encephalopathy in a child with cerebral folate deficiency syndrome. *J Child Neurol.* 2008;23(12):1460–1463
- Hasselmann O, Blau N, Ramaekers VT, Quadros EV, Sequeira JM, Weissert M. Cerebral folate deficiency and CNS inflammatory markers in Alpers disease. *Mol Genet Metab.* 2010;99(1):58–61
- 33. Kruer MC, Hoeftberger R, Lim KY, et al. Aggressive course in encephalitis with opsoclonus, ataxia, chorea, and seizures: the first pediatric case of γ-aminobutyric acid type B receptor autoimmunity. JAMA Neurol. 2014;71(5):620–623
- 34. Damásio J, Leite MI, Coutinho E, et al. Progressive encephalomyelitis with rigidity and myoclonus: the first pediatric case with glycine receptor antibodies. *JAMA Neurol.* 2013;70(4):498–501
- 35. Carvajal-González A, Leite MI, Waters P, et al. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes [published correction appears in *Brain*. 2014;137(pt 12): e315]. *Brain*. 2014;137(pt 8): 2178–2192
- Wuerfel E, Bien CG, Vincent A, Woodhall M, Brockmann K. Glycine receptor antibodies in a boy with focal epilepsy and episodic behavioral disorder. *J Neurol Sci.* 2014;343(1–2):180–182
- Tobin WO, Lennon VA, Komorowski L, et al. DPPX potassium channel antibody: frequency, clinical accompaniments, and outcomes in 20 patients. *Neurology*. 2014;83(20):1797–1803
- 38. Ganor Y, Goldberg-Stern H, Lerman-Sagie T, Teichberg VI, Levite M. Autoimmune epilepsy: distinct subpopulations of epilepsy patients harbor serum autoantibodies to either glutamate/AMPA receptor GluR3, glutamate/NMDA receptor subunit NR2A or double-stranded DNA. *Epilepsy Res.* 2005;65(1–2):11–22
- Graus F, Titulaer MJ, Balu R, et al. A clinical approach to diagnosis of autoimmune encephalitis. *Lancet Neurol.* 2016;15(4):391–404

- Rasmussen T, Olszewski J, Lloydsmith D. Focal seizures due to chronic localized encephalitis. *Neurology*. 1958;8(6):435–445
- Bien CG, Granata T, Antozzi C, et al. Pathogenesis, diagnosis and treatment of Rasmussen encephalitis: a European consensus statement. *Brain*. 2005;128(pt 3):454–471
- Rogers SW, Andrews PI, Gahring LC, et al. Autoantibodies to glutamate receptor GluR3 in Rasmussen's encephalitis. *Science*. 1994;265(5172):648–651
- Watson R, Jiang Y, Bermudez I, et al. Absence of antibodies to glutamate receptor type 3 (GluR3) in Rasmussen encephalitis. *Neurology*. 2004;63(1):43–50
- 44. Mantegazza R, Bernasconi P, Baggi F, et al. Antibodies against GluR3 peptides are not specific for Rasmussen's encephalitis but are also present in epilepsy patients with severe, early onset disease and intractable seizures. *J Neuroimmunol.* 2002;131(1–2):179–185
- Takahashi Y, Mori H, Mishina M, et al. Autoantibodies to NMDA receptor in patients with chronic forms of epilepsia partialis continua. *Neurology*. 2003;61(7):891–896
- 46. Takahashi Y, Mori H, Mishina M, et al. Autoantibodies and cellmediated autoimmunity to NMDAtype GluRepsilon2 in patients with Rasmussen's encephalitis and chronic progressive epilepsia partialis continua. *Epilepsia*. 2005;46(suppl 5):152–158
- Farrell MA, Droogan O, Secor DL, Poukens V, Quinn B, Vinters HV. Chronic encephalitis associated with epilepsy: immunohistochemical and ultrastructural studies. *Acta Neuropathol.* 1995;89(4):313–321
- Li Y, Uccelli A, Laxer KD, et al. Localclonal expansion of infiltrating T lymphocytes in chronic encephalitis of Rasmussen. *J Immunol.* 1997;158(3):1428–1437
- Bien CG, Bauer J, Deckwerth TL, et al. Destruction of neurons by cytotoxic T cells: a new pathogenic mechanism in Rasmussen's encephalitis. *Ann Neurol.* 2002;51(3):311–318

- Varadkar S, Bien CG, Kruse CA, et al. Rasmussen's encephalitis: clinical features, pathobiology, and treatment advances. *Lancet Neurol.* 2014;13(2):195–205
- Owens GC, Erickson KL, Malone CC, et al. Evidence for the involvement of gamma delta T cells in the immune response in Rasmussen encephalitis. *J Neuroinflammation*. 2015;12(1): 134
- 52. Takahashi Y, Mogami Y, Mine J, et al. Genetic variations of immunoregulatory genes associated with Rasmussen syndrome. *Epilepsy Res.* 2013;107(3):238–243
- 53. Cepeda C, Chang JW, Owens GC, et al. In Rasmussen encephalitis, hemichannels associated with microglial activation are linked to cortical pyramidal neuron coupling: a possible mechanism for cellular hyperexcitability. *CNS Neurosci Ther*. 2015;21(2):152–163
- O'Rourke DJ, Bergin A, Rotenberg A, et al. Rasmussen's encephalitis presenting as focal cortical dysplasia. *Epilepsy Behav Case Rep.* 2014;2: 86–89
- 55. Frigeri T, Hemb M, Paglioli E, et al. Bilateral Rasmussen's encephalitis associated with type II focal cortical dysplasia: dormant 'second' epileptogenic zone in contralateral disease. *Epilepsy Behav Case Rep.* 2013;1:66–68
- 56. Wang D, Blümcke I, Gui Q, et al. Clinico-pathological investigations of Rasmussen encephalitis suggest multifocal disease progression and associated focal cortical dysplasia. *Epileptic Disord.* 2013;15(1):32–43
- 57. Ravindra VM, Mazur MD, Mohila CA, Sweney MT, Hersh A, Bollo RJ. Rasmussen encephalitis with dual pathology in a patient without seizures: case report and literature review. *Childs Nerv Syst.* 2015;31(11):2165–2171
- Bauer J, Bien CG. Encephalitis and epilepsy. *Semin Immunopathol.* 2009;31(4):537–544
- Hartman AL, Cross JH. Timing of surgery in rasmussen syndrome: is patience a virtue? *Epilepsy Curr*. 2014;14(suppl 1):8–11

- Montelli TC, Soares AM, Peraçoli MT. Immunologic aspects of West syndrome and evidence of plasma inhibitory effects on T cell function. *Arq Neuropsiquiatr*. 2003;61(3B): 731–737
- Tekgul H, Polat M, Tosun A, Serdaroglu G, Kutukculer N, Gokben S. Cerebrospinal fluid interleukin-6 levels in patients with West syndrome. *Brain Dev.* 2006;28(1):19–23
- Landau WM, Kleffner FR. Syndrome of acquired aphasia with convulsive disorder in children. *Neurology*. 1957;7(8):523–530
- Buzatu M, Bulteau C, Altuzarra C, Dulac O, Van Bogaert P. Corticosteroids as treatment of epileptic syndromes with continuous spike-waves during slow-wave sleep. *Epilepsia*. 2009;50(suppl 7):68–72
- 64. Connolly AM, Chez MG, Pestronk A, Arnold ST, Mehta S, Deuel RK. Serum autoantibodies to brain in Landau-Kleffner variant, autism, and other neurologic disorders. *J Pediatr.* 1999;134(5):607–613
- 65. Connolly AM, Chez M, Streif EM, et al. Brain-derived neurotrophic factor and autoantibodies to neural antigens in sera of children with autistic spectrum disorders, Landau-Kleffner syndrome, and epilepsy. *Biol Psychiatry*. 2006;59(4):354–363
- Boscolo S, Baldas V, Gobbi G, et al. Antibrain but not celiac disease antibodies in Landau-Kleffner syndrome and related epilepsies. *J Neuroimmunol*. 2005;160(1–2):228–232
- Nevsímalová S, Tauberová A, Doutlík S, Kucera V, Dlouhá O. A role of autoimmunity in the etiopathogenesis of Landau-Kleffner syndrome? *Brain Dev.* 1992;14(5):342–345
- 68. van den Munckhof B, de Vries EE, Braun KP, et al. Serum inflammatory mediators correlate with disease activity in electrical status epilepticus in sleep (ESES) syndrome. *Epilepsia*. 2016;57(2):e45–e50
- 69. Cole AJ, Andermann F, Taylor L, et al. The Landau-Kleffner syndrome of acquired epileptic aphasia: unusual clinical outcome, surgical experience, and absence of encephalitis. *Neurology.* 1988;38(1):31–38

- Nabbout R, Vezzani A, Dulac O, Chiron C. Acute encephalopathy with inflammation-mediated status epilepticus. *Lancet Neurol.* 2011;10(1):99–108
- Sethi NK, Tenney JR. Child neurology: hemiconvulsion-hemiplegiaepilepsy syndrome. *Neurology*. 2012;79(24):2367; author reply 2367–2368
- Nabbout R. FIRES and IHHE: delineation of the syndromes. *Epilepsia*. 2013;54(suppl 6):54–56
- Sakuma H, Fukumizu M, Kohyama J. Efficacy of anticonvulsants on acute encephalitis with refractory, repetitive partial seizures (AERRPS) [in Japanese]. *No To Hattatsu.* 2001;33(5):385–390
- 74. Saito Y, Maegaki Y, Okamoto R, et al. Acute encephalitis with refractory, repetitive partial seizures: case reports of this unusual postencephalitic epilepsy. *Brain Dev.* 2007;29(3):147–156
- Wilder-Smith EP, Lim EC, Teoh HL, et al. The NORSE (new-onset refractory status epilepticus) syndrome: defining a disease entity. *Ann Acad Med Singapore*. 2005;34(7):417–420
- Mikaeloff Y, Jambaqué I, Hertz-Pannier L, et al. Devastating epileptic encephalopathy in school-aged children (DESC): a pseudo encephalitis. *Epilepsy Res.* 2006;69(1):67–79
- Kramer U, Chi CS, Lin KL, et al. Febrile infection-related epilepsy syndrome (FIRES): pathogenesis, treatment, and outcome: a multicenter study on 77 children. *Epilepsia*. 2011;52(11):1956–1965
- 78. van Baalen A, Häusler M, Plecko-Startinig B, et al. Febrile infectionrelated epilepsy syndrome without detectable autoantibodies and response to immunotherapy: a case series and discussion of epileptogenesis in FIRES. *Neuropediatrics.* 2012;43(4):209–216
- Specchio N, Fusco L, Claps D, et al. Childhood refractory focal epilepsy following acute febrile encephalopathy. *Eur J Neurol.* 2011;18(7):952–961
- Wakamoto H, Takahashi Y, Ebihara T, et al. An immunologic case study of acute encephalitis with refractory,

repetitive partial seizures. *Brain Dev.* 2012;34(9):763–767

- Milh M, Villeneuve N, Chapon F, et al. New onset refractory convulsive status epilepticus associated with serum neuropil auto-antibodies in a school aged child. *Brain Dev.* 2011;33(8):687–691
- Okanishi T, Mori Y, Kibe T, et al. Refractory epilepsy accompanying acute encephalitis with multifocal cortical lesions: possible autoimmune etiology. *Brain Dev.* 2007;29(9):590–594
- Gall CR, Jumma O, Mohanraj R. Five cases of new onset refractory status epilepticus (NORSE) syndrome: outcomes with early immunotherapy. *Seizure*. 2013;22(3):217–220
- Kenney-Jung DL, Vezzani A, Kahoud RJ, et al. Febrile infection-related epilepsy syndrome treated with anakinra. *Ann Neurol.* 2016;80(6):939–945
- Stafstrom CE. The incidence and prevalence of febrile seizures. In: Baram TZ, Sihinnar S, eds. *Febrile Seizures*. San Diego, CA: Academic Press; 2002:1–25
- Choy M, Dubé CM, Ehrengruber M, Baram TZ. Inflammatory processes, febrile seizures, and subsequent epileptogenesis. *Epilepsy Curr*. 2014;14(suppl 1):15–22
- Dubé C, Vezzani A, Behrens M, Bartfai T, Baram TZ. Interleukin-1beta contributes to the generation of experimental febrile seizures. *Ann Neurol.* 2005;57 (1):152–155
- Bubé CM, Ravizza T, Hamamura M, et al. Epileptogenesis provoked by prolonged experimental febrile seizures: mechanisms and biomarkers. *J Neurosci.* 2010;30(22):7484–7494
- Hu MH, Huang GS, Wu CT, et al; CHEESE Study Group. Analysis of plasma multiplex cytokines for children with febrile seizures and severe acute encephalitis. *J Child Neurol.* 2014;29(2):182–186
- Emsley HC, Appleton RE, Whitmore CL, et al. Variations in inflammationrelated genes may be associated with childhood febrile seizure susceptibility. *Seizure*. 2014;23(6):457–461
- 91. Vezzani A. Epilepsy and inflammation in the brain: overview and

pathophysiology. *Epilepsy Curr*. 2014;14(suppl 1):3–7

- Vezzani A, Rüegg S. The pivotal role of immunity and inflammatory processes in epilepsy is increasingly recognized: introduction. *Epilepsia*. 2011;52(suppl 3):1–4
- Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. *Nat Rev Neurol.* 2011;7(1):31–40
- 94. Xanthos DN, Sandkühler J. Neurogenic neuroinflammation: inflammatory CNS reactions in response to neuronal activity. *Nat Rev Neurosci.* 2014;15(1):43–53
- Xu D, Miller SD, Koh S. Immune mechanisms in epileptogenesis. Front Cell Neurosci. 2013;7:195
- Friedman A, Dingledine R. Molecular cascades that mediate the influence of inflammation on epilepsy. *Epilepsia*. 2011;52(suppl 3):33–39
- Marchi N, Granata T, Janigro D. Inflammatory pathways of seizure disorders. *Trends Neurosci.* 2014;37(2):55–65
- Pitkänen A, Lukasiuk K. Mechanisms of epileptogenesis and potential treatment targets. *Lancet Neurol.* 2011;10(2):173–186
- 99. Greenwood J, Etienne-Manneville S, Adamson P, Couraud PO. Lymphocyte migration into the central nervous system: implication of ICAM-1 signalling at the blood-brain barrier. Vascul Pharmacol. 2002;38(6):315–322
- 100. Zattoni M, Mura ML, Deprez F, et al. Brain infiltration of leukocytes contributes to the pathophysiology of temporal lobe epilepsy. *J Neurosci.* 2011;31(11):4037–4050
- Marchi N, Angelov L, Masaryk T, et al. Seizure-promoting effect of bloodbrain barrier disruption. *Epilepsia*. 2007;48(4):732–742
- 102. Cornford EM, Oldendorf WH. Epilepsy and the blood-brain barrier. *Adv Neurol.* 1986;44:787–812
- 103. Cornford EM. Epilepsy and the blood brain barrier: endothelial cell responses to seizures. *Adv Neurol.* 1999;79:845–862
- 104. Janigro D. Blood-brain barrier, ion homeostatis and epilepsy:

possible implications towards the understanding of ketogenic diet mechanisms. *Epilepsy Res.* 1999;37(3):223–232

- 105. van Vliet EA, da Costa Araújo S, Redeker S, van Schaik R, Aronica E, Gorter JA. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. *Brain.* 2007;130(pt 2):521–534
- 106. Janigro D. Are you in or out? Leukocyte, ion, and neurotransmitter permeability across the epileptic blood-brain barrier. *Epilepsia*. 2012;53(suppl 1):26–34
- 107. Oby E, Janigro D. The blood-brain barrier and epilepsy. *Epilepsia*. 2006;47(11):1761–1774
- 108. Seiffert E, Dreier JP, Ivens S, et al. Lasting blood-brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J Neurosci. 2004;24(36):7829–7836
- 109. Bargerstock E, Puvenna V, Iffland P, et al. Is peripheral immunity regulated by blood-brain barrier permeability changes? *PLoS One*. 2014;9(7): e101477
- Ravizza T, Balosso S, Vezzani A. Inflammation and prevention of epileptogenesis. *Neurosci Lett.* 2011;497(3):223–230
- 111. Marchi N, Granata T, Alexopoulos A, Janigro D. The blood-brain barrier hypothesis in drug resistant epilepsy. *Brain.* 2012;135(pt 4):e211
- 112. Fabene PF, Navarro Mora G, Martinello M, et al. A role for leukocyte-endothelial adhesion mechanisms in epilepsy. *Nat Med.* 2008;14(12):1377–1383
- 113. Marchi N, Granata T, Freri E, et al. Efficacy of anti-inflammatory therapy in a model of acute seizures and in a population of pediatric drug resistant epileptics. *PLoS One.* 2011;6(3):e18200
- 114. Noe FM, Polascheck N, Frigerio F, et al. Pharmacological blockade of IL-1β/IL-1 receptor type 1 axis during epileptogenesis provides neuroprotection in two rat models of temporal lobe epilepsy. *Neurobiol Dis.* 2013;59:183–193
- 115. van Vliet EA, Forte G, Holtman L, et al. Inhibition of mammalian target of

rapamycin reduces epileptogenesis and blood-brain barrier leakage but not microglia activation. *Epilepsia*. 2012;53(7):1254–1263

- Beghi E, Shorvon S. Antiepileptic drugs and the immune system. *Epilepsia*. 2011;52(suppl 3):40–44
- 117. Janigro D, Iffland PH II, Marchi N, Granata T. A role for inflammation in status epilepticus is revealed by a review of current therapeutic approaches. *Epilepsia*. 2013;54(suppl 6):30–32
- 118. Bien CG. Value of autoantibodies for prediction of treatment response in patients with autoimmune epilepsy: review of the literature and suggestions for clinical management. *Epilepsia*. 2013;54(suppl 2):48–55
- Kurian M, Korff CM. Steroids in pediatric epilepsy: infantile spasms and beyond.... *Epileptologie*. 2011;28:15–20
- 120. Verhelst H, Boon P, Buyse G, et al. Steroids in intractable childhood epilepsy: clinical experience and review of the literature. *Seizure*. 2005;14(6):412–421
- Geva-Dayan K, Shorer Z, Menascu S, et al. Immunoglobulin treatment for severe childhood epilepsy. *Pediatr Neurol.* 2012;46(6):375–381
- 122. Billiau AD, Witters P, Ceulemans B, Kasran A, Wouters C, Lagae L. Intravenous immunoglobulins in refractory childhood-onset epilepsy: effects on seizure frequency, EEG activity, and cerebrospinal fluid cytokine profile. *Epilepsia*. 2007;48(9):1739–1749
- 123. Mikati MA, Kurdi R, El-Khoury Z, Rahi A, Raad W. Intravenous immunoglobulin therapy in intractable childhood epilepsy: open-label study and review of the literature. *Epilepsy Behav.* 2010;17(1):90–94
- 124. Lousa M, Sanchez-Alonso S, Rodriguez-Diaz R, Dalmau J. Status epilepticus with neuron-reactive serum antibodies: response to plasma exchange. *Neurology*. 2000;54(11):2163–2165
- 125. Palcoux JB, Carla H, Tardieu M, et al. Plasma exchange in Rasmussen's encephalitis. *Ther Apher*. 1997;1(1):79–82

- 126. Viaccoz A, Laive P. Autoimmune epilepsie: treatment overview. *Epileptologie*. 2014;31:31–38
- 127. Viaccoz A, Honnorat J. Paraneoplastic neurological syndromes: general treatment overview. *Curr Treat Options Neurol.* 2013;15(2):150–168
- Özkara Ç, Vigevano F. Immuno- and antiinflammatory therapies in epileptic disorders. *Epilepsia*. 2011;52(suppl 3):45–51
- 129. Walker L, Pirmohamed M, Marson AG. Immunomodulatory interventions for focal epilepsy syndromes. *Cochrane Database Syst Rev.* 2013;(6):CD009945
- 130. Geng J, Dong J, Li Y, et al. Intravenous immunoglobulins for epilepsy. *Cochrane Database Syst Rev.* 2011;(1):CD008557
- 131. Irani SR, Stagg CJ, Schott JM, et al. Faciobrachial dystonic seizures: the influence of immunotherapy on seizure control and prevention of cognitive impairment in a broadening phenotype. *Brain.* 2013;136(pt 10):3151–3162
- 132. Toledano M, Britton JW, McKeon A, et al. Utility of an immunotherapy trial in evaluating patients with presumed autoimmune epilepsy. *Neurology*. 2014;82(18):1578–1586
- 133. Pinato L, da Silveira Cruz-Machado S, Franco DG, et al. Selective protection of the cerebellum against intracerebroventricular LPS is mediated by local melatonin synthesis. *Brain Struct Funct.* 2015;220(2):827–840
- 134. Calvo JR, González-Yanes C, Maldonado MD. The role of melatonin in the cells of the innate immunity: a review. *J Pineal Res.* 2013;55(2):103–120
- 135. Henry CJ, Huang Y, Wynne A, et al. Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. *J Neuroinflammation*. 2008;5:15
- 136. Hou Y, Heon Ryu C, Jun JA, Kim SM, Jeong CH, Jeun SS. Interferon β-secreting mesenchymal stem cells combined with minocycline attenuate experimental autoimmune encephalomyelitis. J Neuroimmunol. 2014;274(1–2):20–27

- 137. Grieco JC, Ciarlone SL, Gieron-Korthals M, et al. An open-label pilot trial of minocycline in children as a treatment for Angelman syndrome. *BMC Neurol.* 2014;14:232
- 138. Nosadini M, Mohammad SS, Ramanathan S, Brilot F, Dale RC. Immune therapy in autoimmune encephalitis: a systematic review. *Expert Rev Neurother*. 2015;15(12):1391–1419
- 139. Suleiman J, Brilot F, Lang B, Vincent A, Dale RC. Autoimmune epilepsy in children: case series and proposed guidelines for identification. *Epilepsia*. 2013;54(6):1036–1045
- 140. Armangue T, Moris G, Cantarín-Extremera V, et al; Spanish Prospective Multicentric Study of Autoimmunity in Herpes Simplex Encephalitis. Autoimmune postherpes simplex encephalitis of adults and teenagers. *Neurology*. 2015;85(20):1736–1743
- 141. Solis N, Salazar L, Hasbun R. Anti-NMDA Receptor antibody encephalitis with concomitant detection of Varicella zoster virus. *J Clin Virol.* 2016;83:26–28
- 142. Schein F, Gagneux-Brunon A, Antoine JC, et al. Anti-N-methyl-D-aspartate receptor encephalitis after Herpes simplex virus-associated encephalitis: an emerging disease with diagnosis and therapeutic challenges [published online ahead of print November 8, 2016]. *Infection.* doi:10.1007/ s15010-016-0959-y
- 143. Pillai SC, Mohammad SS, Hacohen Y, et al. Postencephalitic epilepsy and drug-resistant epilepsy after infectious

and antibody-associated encephalitis in childhood: clinical and etiologic risk factors. *Epilepsia*. 2016;57(1):e7–e11

- 144. Lin JJ, Hsia SH, Wu CT, Wang HS, Lin KL. Mycoplasma pneumoniae-related postencephalitic epilepsy in children. *Epilepsia*. 2011;52(11):1979–1985
- 145. Johnson TP, Tyagi R, Lee PR, et al. Nodding syndrome may be an autoimmune reaction to the parasitic worm Onchocerca volvulus. *Sci Transl Med.* 2017;9(377):eaaf6953
- 146. Quek AM, Britton JW, McKeon A, et al. Autoimmune epilepsy: clinical characteristics and response to immunotherapy. *Arch Neurol.* 2012;69(5):582–593
- 147. Schmitt SE, Pargeon K, Frechette ES, Hirsch LJ, Dalmau J, Friedman D. Extreme delta brush: a unique EEG pattern in adults with anti-NMDA receptor encephalitis. *Neurology*. 2012;79(11):1094–1100
- 148. Sinclair AJ, Wienholt L, Tantsis E, Brilot F, Dale RC. Clinical association of intrathecal and mirrored oligoclonal bands in paediatric neurology. *Dev Med Child Neurol.* 2013;55(1):71–75
- 149. Dale RC, Brilot F, Fagan E, Earl J. Cerebrospinal fluid neopterin in paediatric neurology: a marker of active central nervous system inflammation. *Dev Med Child Neurol.* 2009;51(4):317–323
- 150. Gershen LD, Zanotti-Fregonara P, Dustin IH, et al. Neuroinflammation in temporal lobe epilepsy measured using positron emission tomographic imaging of translocator protein. *JAMA Neurol.* 2015;72(8):882–888

- 151. Baysal-Kirac L, Tuzun E, Altindag E, et al. Are there any specific EEG findings in autoimmune epilepsies? *Clin EEG Neurosci.* 2016;47(3): 224–234
- 152. Mohammad SS, Soe SM, Pillai SC, et al. Etiological associations and outcome predictors of acute electroencephalography in childhood encephalitis. *Clin Neurophysiol.* 2016;127(10):3217–3224
- 153. Dalmau J, Lancaster E, Martinez-Hernandez E, Rosenfeld MR, Balice-Gordon R. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. *Lancet Neurol.* 2011;10(1):63–74
- 154. Kurian M, Fluss J, Korff C. Anti-NMDA receptor encephalitis: the importance of early diagnosis and aggressive immunotherapy in tumor negative pediatric patients. *Eur J Paediatr Neurol.* 2012;16(6):764–765
- 155. Kashyape P, Taylor E, Ng J, Krishnakumar D, Kirkham F, Whitney A. Successful treatment of two paediatric cases of anti-NMDA receptor encephalitis with cyclophosphamide: the need for early aggressive immunotherapy in tumour negative paediatric patients. *Eur J Paediatr Neurol.* 2012;16(1):74–78
- 156. Ramanathan S, Mohammad SS, Brilot F, Dale RC. Autoimmune encephalitis: recent updates and emerging challenges. *J Clin Neurosci*. 2014;21(5):722–730
- 157. Pranzatelli MR, Tate ED. Trends and tenets in relapsing and progressive opsoclonus-myoclonus syndrome. *Brain Dev.* 2016;38(5):439–448

The Immune System in Pediatric Seizures and Epilepsies Christian M. Korff and Russell C. Dale *Pediatrics* 2017;140; DOI: 10.1542/peds.2016-3534 originally published online August 9, 2017;

Updated Information & Services	including high resolution figures, can be found at: http://pediatrics.aappublications.org/content/140/3/e20163534
References	This article cites 154 articles, 18 of which you can access for free at: http://pediatrics.aappublications.org/content/140/3/e20163534.full#re f-list-1
Subspecialty Collections	This article, along with others on similar topics, appears in the following collection(s): Neurology http://classic.pediatrics.aappublications.org/cgi/collection/neurology_sub Neurologic Disorders http://classic.pediatrics.aappublications.org/cgi/collection/neurologic_disorders_sub Allergy/Immunology http://classic.pediatrics.aappublications.org/cgi/collection/allergy:immunology_sub Immunologic Disorders http://classic.pediatrics.aappublications.org/cgi/collection/allergy:immunology_sub Immunologic Disorders http://classic.pediatrics.aappublications.org/cgi/collection/immunologic_sub
Permissions & Licensing	Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: https://shop.aap.org/licensing-permissions/
Reprints	Information about ordering reprints can be found online: http://classic.pediatrics.aappublications.org/content/reprints

Pediatrics is the official journal of the American Academy of Pediatrics. A monthly publication, it has been published continuously since . Pediatrics is owned, published, and trademarked by the American Academy of Pediatrics, 141 Northwest Point Boulevard, Elk Grove Village, Illinois, 60007. Copyright © 2017 by the American Academy of Pediatrics. All rights reserved. Print ISSN:

PEDIATRES®

The Immune System in Pediatric Seizures and Epilepsies Christian M. Korff and Russell C. Dale *Pediatrics* 2017;140; DOI: 10.1542/peds.2016-3534 originally published online August 9, 2017;

The online version of this article, along with updated information and services, is located on the World Wide Web at: http://pediatrics.aappublications.org/content/140/3/e20163534

Pediatrics is the official journal of the American Academy of Pediatrics. A monthly publication, it has been published continuously since . Pediatrics is owned, published, and trademarked by the American Academy of Pediatrics, 141 Northwest Point Boulevard, Elk Grove Village, Illinois, 60007. Copyright © 2017 by the American Academy of Pediatrics. All rights reserved. Print ISSN:

Downloaded from http://pediatrics.aappublications.org/ by guest on September 19, 2017